117 research outputs found

    Journal Staff

    Get PDF
    With the proliferation of ontologies and their use in semantically-enabled applications, the issue of finding and repairing defects in ontologies has become increasingly important. Current work mostly targets debugging semantic defects in ontologies. In our work, we focus on another kind of severe defects, modeling defects, which require domain knowledge to detect and resolve. In particular, we debug the missing structural relations (is-a hierarchy) in a fundamental kind of ontologies, i.e. taxonomies. The context of our study is an ontology network consisting of several taxonomies networked by partial reference alignments. We use the ontology network as domain knowledge to detect the missing is-a relations in these ontologies. We also propose algorithms to generate possible repairing actions, rank missing is-a relations, recommend and execute repairing actions. Further, we discuss an implemented system RepOSE and experiments on ontologies of the Ontology Alignment Evaluation Initiative and the Finnish Ontology Library Service

    Completing and Debugging Ontologies: state of the art and challenges

    Full text link
    As semantically-enabled applications require high-quality ontologies, developing and maintaining ontologies that are as correct and complete as possible is an important although difficult task in ontology engineering. A key step is ontology debugging and completion. In general, there are two steps: detecting defects and repairing defects. In this paper we discuss the state of the art regarding the repairing step. We do this by formalizing the repairing step as an abduction problem and situating the state of the art with respect to this framework. We show that there are still many open research problems and show opportunities for further work and advancing the field.Comment: 56 page

    An Ontology for the Materials Design Domain

    Full text link
    In the materials design domain, much of the data from materials calculations are stored in different heterogeneous databases. Materials databases usually have different data models. Therefore, the users have to face the challenges to find the data from adequate sources and integrate data from multiple sources. Ontologies and ontology-based techniques can address such problems as the formal representation of domain knowledge can make data more available and interoperable among different systems. In this paper, we introduce the Materials Design Ontology (MDO), which defines concepts and relations to cover knowledge in the field of materials design. MDO is designed using domain knowledge in materials science (especially in solid-state physics), and is guided by the data from several databases in the materials design field. We show the application of the MDO to materials data retrieved from well-known materials databases.Comment: 16 page

    Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments

    Get PDF
    Ontology alignment is an area of active research where many algorithms and approaches are being developed. Their performance is usually evaluated by comparing the produced alignments to a reference alignment in terms of precision, recall and F-measure. These measures, however, only provide an overall assessment of the quality of the alignments, but do not reveal differences and commonalities between alignments at a finer-grained level such as, e.g., regions or individual mappings. Furthermore, reference alignments are often unavailable, which makes the comparative exploration of alignments at different levels of granularity even more important. Making such comparisons efficient calls for a “human-in-the-loop” approach, best supported through interactive visual representations of alignments. Our approach extends a recent tool, Matrix Cubes, used for visualizing dense dynamic networks. We first identify use cases for ontology alignment evaluation that can benefit from interactive visualization, and then detail how our Alignment Cubes support interactive exploration of multiple ontology alignments. We demonstrate the usefulness of Alignment Cubes by describing visual exploration scenarios, showing how Alignment Cubes support common tasks identified in the use cases

    Results of the Ontology Alignment Evaluation Initiative 2015

    Get PDF
    cheatham2016aInternational audienceOntology matching consists of finding correspondences between semantically related entities of two ontologies. OAEI campaigns aim at comparing ontology matching systems on precisely defined test cases. These test cases can use ontologies of different nature (from simple thesauri to expressive OWL ontologies) and use different modalities, e.g., blind evaluation, open evaluation and consensus. OAEI 2015 offered 8 tracks with 15 test cases followed by 22 participants. Since 2011, the campaign has been using a new evaluation modality which provides more automation to the evaluation. This paper is an overall presentation of the OAEI 2015 campaign

    Results of the Ontology Alignment Evaluation Initiative 2014

    Get PDF
    dragisic2014aInternational audienceOntology matching consists of finding correspondences between semantically related entities of two ontologies. OAEI campaigns aim at comparing ontology matching systems on precisely defined test cases. These test cases can use ontologies of different nature (from simple thesauri to expressive OWL ontologies) and use different modalities, e.g., blind evaluation, open evaluation and consensus. OAEI 2014 offered 7 tracks with 9 test cases followed by 14 participants. Since 2010, the campaign has been using a new evaluation modality which provides more automation to the evaluation. This paper is an overall presentation of the OAEI 2014 campaign

    Results of the Ontology Alignment Evaluation Initiative 2021

    Get PDF
    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity and use different evaluation modalities (e.g., blind evaluation, open evaluation, or consensus). The OAEI 2021 campaign offered 13 tracks and was attended by 21 participants. This paper is an overall presentation of that campaig
    corecore